{"id":13899,"date":"2021-07-08T23:58:19","date_gmt":"2021-07-08T16:58:19","guid":{"rendered":"https:\/\/reviewinvest.com\/?p=13899"},"modified":"2021-07-08T23:58:19","modified_gmt":"2021-07-08T16:58:19","slug":"fibonacci-la-gi","status":"publish","type":"post","link":"https:\/\/reviewinvest.com\/fibonacci-la-gi\/","title":{"rendered":"Fibonacci l\u00e0 g\u00ec? H\u01b0\u1edbng d\u1eabn c\u00e1ch s\u1eed d\u1ee5ng Fibonacci trong Trading"},"content":{"rendered":"\n\n
\n \n
\n \n
\n
\n \n\n
<\/div>\n <\/div>\n
\n \n\n
<\/div>\n <\/div>\n
\n \n\n
<\/div>\n <\/div>\n
\n \n\n
<\/div>\n <\/div>\n
\n \n\n
<\/div>\n <\/div>\n <\/div>\n \n
\n
\n \n\n
<\/div>\n <\/div>\n
\n \n\n
<\/div>\n <\/div>\n
\n \n\n
<\/div>\n <\/div>\n
\n \n\n
<\/div>\n <\/div>\n
\n \n\n
<\/div>\n <\/div>\n <\/div>\n<\/div>\n \n\n
\n \u0110\u00e1nh gi\u00e1 b\u00e0i vi\u1ebft<\/span>\n <\/div>\n <\/div>\n

Trong th\u1ecb tr\u01b0\u1eddng ti\u1ec1n \u0111i\u1ec7n t\u1eed, c\u00e1c nh\u00e0 \u0111\u1ea7u t\u01b0 ph\u1ea3i li\u00ean t\u1ee5c t\u00ecm hi\u1ec3u v\u1ec1 c\u00e1c c\u00f4ng c\u1ee5 v\u00e0 k\u1ef9 thu\u1eadt \u0111\u1ec3 theo k\u1ecbp th\u1ecb tr\u01b0\u1eddng. C\u00e1c c\u00f4ng c\u1ee5, k\u1ef9 thu\u1eadt n\u00e0y s\u1ebd gi\u00fap b\u1ea1n d\u1ef1 \u0111o\u00e1n \u0111\u01b0\u1ee3c n\u00ean tham gia v\u00e0 r\u1eddi \u0111i v\u00e0o th\u1eddi \u0111i\u1ec3m n\u00e0o. V\u00e0 n\u1ebfu \u0111\u00e3 tham gia v\u00e0o th\u1ecb tr\u01b0\u1eddng Forex, b\u1ea1n h\u1eb3n ph\u1ea3i quan t\u00e2m \u0111\u1ebfn <\/span>Fibonacci<\/b>. M\u1ed9t trong nh\u1eefng k\u1ef9 thu\u1eadt h\u1eefu hi\u1ec7u nh\u1ea5t \u0111\u00e3 \u0111\u01b0\u1ee3c ph\u00e1t tri\u1ec3n th\u00e0nh nhi\u1ec1u bi\u1ebfn th\u1ec3 kh\u00e1c nhau. Ch\u00ednh v\u00ec s\u1ef1 \u0111\u1eb7c bi\u1ec7t \u0111\u00f3 n\u00ean h\u00f4m nay <\/span>Review Invest<\/b> s\u1ebd \u0111\u01b0a b\u1ea1n \u0111i t\u00ecm hi\u1ec3u k\u1ef9 h\u01a1n v\u1ec1 <\/span>Fibonacci<\/b> v\u00e0 c\u00e1ch s\u1eed d\u1ee5ng n\u00f3 trong b\u00e0i vi\u1ebft n\u00e0y nh\u00e9!<\/span><\/p>\n

Th\u1ebf n\u00e0o l\u00e0 d\u00e3y s\u1ed1 Fibonacci trong Trading?<\/b><\/h2>\n

Fibonacci<\/b> l\u00e0 m\u1ed9t ch\u1ec9 b\u00e1o trong ph\u00e2n t\u00edch k\u1ef9 thu\u1eadt c\u00f3 ngu\u1ed3n g\u1ed1c t\u1eeb l\u00fd thuy\u1ebft to\u00e1n h\u1ecdc \u0111\u01b0\u1ee3c <\/span>Leonardo Fibonacci <\/b>c\u00f4ng b\u1ed1. <\/span>Fibonacci <\/b>theo l\u00fd thuy\u1ebft l\u00e0 d\u00e3y c\u00e1c s\u1ed1 t\u1ef1 nhi\u00ean v\u00f4 h\u1ea1n b\u1eaft \u0111\u1ea7u b\u1eb1ng 0 v\u00e0 1 ho\u1eb7c 1 v\u00e0 1. C\u00e1c s\u1ed1 ti\u1ebfp theo c\u00f3 quy t\u1eafc l\u00e0 t\u1ed5ng c\u1ee7a hai s\u1ed1 \u0111\u1ee9ng tr\u01b0\u1edbc n\u00f3. \u0110\u00e2y l\u00e0 d\u00e3y <\/span>Fibonacci<\/b>: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 114, 233, 377, 610,… D\u00e3y n\u00e0y \u0111\u01b0\u1ee3c \u00e1p d\u1ee5ng nhi\u1ec1u trong nhi\u1ec1u l\u0129nh v\u1ef1c kh\u00e1c nhau t\u1eeb khoa h\u1ecdc c\u00f4ng ngh\u1ec7 hay ngh\u1ec7 thu\u1eadt. V\u00e0 \u0111\u01b0\u1ee3c s\u1eed d\u1ee5ng nhi\u1ec1u trong ph\u00e2n t\u00edch \u0111\u1ea7u t\u01b0, \u0111\u1eb7c bi\u1ec7t l\u00e0 trong <\/span>ph\u00e2n t\u00edch k\u1ef9 thu\u1eadt<\/b><\/a>.\u00a0<\/span><\/p>\n

\"\"
Fibonacci<\/figcaption><\/figure>\n

T\u1eeb \u0111\u00e2y, ng\u01b0\u1eddi chia c\u00e1c s\u1ed1 n\u00e0y cho nhau v\u00e0 ph\u00e1t hi\u1ec7n ra t\u1ef7 l\u1ec7 161.8% (hay c\u00f2n g\u1ecdi l\u00e0 t\u1ef7 l\u1ec7 v\u00e0ng), 23.6%, 28.2%, 61.8%. C\u00e1c t\u1ef7 l\u1ec7 n\u00e0y t\u00ecnh c\u1edd l\u1ea1i r\u1ea5t ph\u1ed5 bi\u1ebfn trong t\u1ef1 nhi\u00ean v\u00e0 l\u00e0 m\u1ee9c n\u1ed5i b\u1eadt trong giao d\u1ecbch \u0111\u1ea7u t\u01b0 v\u00e0 ph\u00e2n t\u00edch k\u1ef9 thu\u1eadt. V\u00e0 qua \u0111\u00f3 ng\u01b0\u1eddi ta \u0111\u00e3 ph\u00e1t tri\u1ec3n nhi\u1ec1u c\u00f4ng c\u1ee5 ph\u00e2n t\u00edch trong Trading. Nh\u1eefng c\u00f4ng c\u1ee5 n\u00e0y \u0111\u1ec1u c\u00f3 t\u00e1c d\u1ee5ng trong ch\u1ed1t l\u1eddi v\u00e0 d\u1eebng l\u1ed7.<\/span><\/p>\n

Fibonacci trong ph\u00e2n t\u00edch k\u1ef9 thu\u1eadt<\/b><\/h2>\n

Fibonacci<\/b> c\u00f3 t\u1ef7 l\u1ec7 v\u00f4 c\u00f9ng quan tr\u1ecdng trong c\u00e1ch v\u1eadn \u0111\u1ed9ng c\u1ee7a gi\u00e1 v\u00e0 x\u00e1c \u0111\u1ecbnh c\u00e1c \u0111i\u1ec3m di chuy\u1ec3n c\u1ee7a gi\u00e1. Trong c\u00e1c d\u1ea1ng th\u00ec<\/span> Fibonacci Retracement<\/b> \u0111\u01b0\u1ee3c s\u1eed d\u1ee5ng r\u1ed9ng r\u00e3i nh\u1ea5t v\u1edbi kh\u1ea3 n\u0103ng \u1ee9ng d\u1ee5ng c\u1ee7a n\u00f3 v\u00e0o h\u1ea7u h\u1ebft c\u00e1c d\u1ea1ng t\u00e0i s\u1ea3n. Ch\u00fang c\u00f3 th\u1ec3 \u0111\u01b0\u1ee3c s\u1eed d\u1ee5ng \u0111\u1ec3 x\u00e1c \u0111\u1ecbnh c\u00e1c m\u1ee9c h\u1ed7 tr\u1ee3 – kh\u00e1ng c\u1ef1, \u0111\u1eb7t l\u1ec7nh ch\u1ed1t l\u1eddi – d\u1eebng l\u1ed7 ho\u1eb7c x\u00e1c \u0111\u1ecbnh m\u1ee5c ti\u00eau. H\u1ea7u h\u1ebft c\u00e1c <\/span>n\u1ec1n t\u1ea3ng Forex <\/b><\/a>hi\u1ec7n nay \u0111\u1ec1u s\u1eed d\u1ee5ng c\u00f4ng c\u1ee5 <\/span>Fibonacci Retracement<\/b> \u0111\u1ec3 ph\u00e2n t\u00edch k\u1ef9 thu\u1eadt.<\/span><\/p>\n

\"\"
T\u1ef7 l\u1ec7 v\u00e0ng c\u1ee7a Fibonacci<\/figcaption><\/figure>\n

Tuy nhi\u00ean, kh\u00f4ng c\u00f3 s\u1ef1 \u0111\u1ea3m b\u1ea3o n\u00e0o r\u1eb1ng gi\u00e1 s\u1ebd ph\u1ea3n \u1ee9ng t\u1ed1t v\u1edbi c\u00f4ng c\u1ee5 \u0111\u00f3 n\u00ean ph\u1ea3i k\u1ebft h\u1ee3p nhi\u1ec1u t\u00edn hi\u1ec7u kh\u00e1c trong Trading. B\u00ean c\u1ea1nh \u0111\u00f3, Fibonacci c\u00f3 qu\u00e1 nhi\u1ec1u \u0111\u01b0\u1eddng c\u1ea3n gi\u00e1. Gi\u00e1 s\u1ebd th\u01b0\u1eddng xuy\u00ean di chuy\u1ec3n qua l\u1ea1i gi\u1eefa c\u00e1c \u0111\u01b0\u1eddng n\u00e0y. V\u00e0 \u0111i\u1ec1u n\u00e0y l\u00e0m cho Trader kh\u00f4ng x\u00e1c \u0111\u1ecbnh \u0111\u01b0\u1ee3c ng\u01b0\u1ee1ng c\u1ea3n hi\u1ec7u qu\u1ea3 nh\u1ea5t \u0111\u1ec3 c\u00e2n nh\u1eafc \u0111\u1ea7u t\u01b0.\u00a0<\/span><\/p>\n

C\u00e1ch d\u00f9ng Fibonacci Retracement trong Trading<\/b><\/h2>\n

Fibonacci Retracement<\/b> s\u1ebd r\u1ea5t h\u1eefu \u00edch n\u1ebfu nh\u01b0 b\u1ea1n bi\u1ebft s\u1eed d\u1ee5ng \u0111\u00fang c\u00e1ch. V\u00ec c\u00f4ng c\u1ee5 n\u00e0y r\u1ea5t tr\u1ef1c quan tr\u00ean bi\u1ec3u \u0111\u1ed3 c\u00e0 lo\u1ea1i b\u1ecf \u0111\u01b0\u1ee3c s\u1ef1 c\u1ea3m t\u00ednh trong giao d\u1ecbch. T\u1eeb c\u00f4ng c\u1ee5 n\u00e0y, nh\u00e0 \u0111\u1ea7u t\u01b0 c\u00f3 th\u1ec3 quan s\u00e1t \u0111\u01b0\u1ee3c v\u00f9ng ti\u1ec1m n\u0103ng m\u00e0 c\u00f3 gi\u00e1 t\u1ed1t nh\u1ea5t. <\/span>Fibonacci Retracement<\/b> d\u1ef1a tr\u00ean c\u00e1c c\u00f4ng c\u1ee5 t\u00e0i ch\u00ednh kh\u00e1c nhau nh\u01b0 gi\u00e1 ti\u1ec1n t\u1ec7, c\u1ed5 phi\u1ebfu v\u00e0 h\u00e0ng h\u00f3a. V\u00e0 \u0111\u01b0\u1ee3c s\u1eed d\u1ee5ng trong c\u00e1c m\u1ed1c th\u1eddi gian kh\u00e1c nhau. Tuy nhi\u00ean, d\u1ef1 \u0111o\u00e1n gi\u00e1 tr\u1ecb c\u1ee7a n\u00f3 thay \u0111\u1ed5i t\u00f9y theo th\u1eddi \u0111i\u1ec3m. Trong m\u1ed9t xu h\u01b0\u1edbng t\u0103ng gi\u00e1 s\u1ebd kh\u00f4ng \u0111i\u1ec1u ch\u1ec9nh qu\u00e1 \u2154 \u0111o\u1ea1n t\u0103ng tr\u01b0\u1edbc. V\u00ec v\u1eady c\u00f3 quy t\u1eafc l\u00e0 m\u1ed9t \u0111\u1ee3t \u0111i\u1ec1u ch\u1ec9nh l\u00e0nh m\u1ea1nh th\u00ec gi\u00e1 s\u1ebd hi\u1ebfm khi qu\u00e1 thang<\/span>\u00a0<\/b>61.8%.<\/span><\/p>\n

C\u00e1ch s\u1eed d\u1ee5ng ch\u1ec9 b\u00e1o Fibonacci<\/b><\/h3>\n

\u0110\u1ec3 s\u1eed d\u1ee5ng ch\u1ec9 b\u00e1o <\/span>Fibonacci<\/b>, b\u1ea1n ph\u1ea3i l\u1ef1a ch\u1ecdn m\u1ed9t chuy\u1ec3n \u0111\u1ed9ng t\u0103ng gi\u00e1 m\u1ea1nh. Sau \u0111\u00f3, h\u00e3y th\u1ef1c hi\u1ec7n nh\u01b0 sau \u0111\u1ec3 xem gi\u00e1 c\u00f3 th\u1ec3 quay tr\u1edf l\u1ea1i bao xa tr\u01b0\u1edbc khi ti\u1ebfp t\u1ee5c v\u1edbi xu h\u01b0\u1edbng t\u0103ng:<\/span><\/p>\n