T\u1ef7 l\u1ec7 v\u00e0ng c\u1ee7a Fibonacci<\/figcaption><\/figure>\nTuy nhi\u00ean, kh\u00f4ng c\u00f3 s\u1ef1 \u0111\u1ea3m b\u1ea3o n\u00e0o r\u1eb1ng gi\u00e1 s\u1ebd ph\u1ea3n \u1ee9ng t\u1ed1t v\u1edbi c\u00f4ng c\u1ee5 \u0111\u00f3 n\u00ean ph\u1ea3i k\u1ebft h\u1ee3p nhi\u1ec1u t\u00edn hi\u1ec7u kh\u00e1c trong Trading. B\u00ean c\u1ea1nh \u0111\u00f3, Fibonacci c\u00f3 qu\u00e1 nhi\u1ec1u \u0111\u01b0\u1eddng c\u1ea3n gi\u00e1. Gi\u00e1 s\u1ebd th\u01b0\u1eddng xuy\u00ean di chuy\u1ec3n qua l\u1ea1i gi\u1eefa c\u00e1c \u0111\u01b0\u1eddng n\u00e0y. V\u00e0 \u0111i\u1ec1u n\u00e0y l\u00e0m cho Trader kh\u00f4ng x\u00e1c \u0111\u1ecbnh \u0111\u01b0\u1ee3c ng\u01b0\u1ee1ng c\u1ea3n hi\u1ec7u qu\u1ea3 nh\u1ea5t \u0111\u1ec3 c\u00e2n nh\u1eafc \u0111\u1ea7u t\u01b0.\u00a0<\/span><\/p>\nC\u00e1ch d\u00f9ng Fibonacci Retracement trong Trading<\/b><\/h2>\n
Fibonacci Retracement<\/b> s\u1ebd r\u1ea5t h\u1eefu \u00edch n\u1ebfu nh\u01b0 b\u1ea1n bi\u1ebft s\u1eed d\u1ee5ng \u0111\u00fang c\u00e1ch. V\u00ec c\u00f4ng c\u1ee5 n\u00e0y r\u1ea5t tr\u1ef1c quan tr\u00ean bi\u1ec3u \u0111\u1ed3 c\u00e0 lo\u1ea1i b\u1ecf \u0111\u01b0\u1ee3c s\u1ef1 c\u1ea3m t\u00ednh trong giao d\u1ecbch. T\u1eeb c\u00f4ng c\u1ee5 n\u00e0y, nh\u00e0 \u0111\u1ea7u t\u01b0 c\u00f3 th\u1ec3 quan s\u00e1t \u0111\u01b0\u1ee3c v\u00f9ng ti\u1ec1m n\u0103ng m\u00e0 c\u00f3 gi\u00e1 t\u1ed1t nh\u1ea5t. <\/span>Fibonacci Retracement<\/b> d\u1ef1a tr\u00ean c\u00e1c c\u00f4ng c\u1ee5 t\u00e0i ch\u00ednh kh\u00e1c nhau nh\u01b0 gi\u00e1 ti\u1ec1n t\u1ec7, c\u1ed5 phi\u1ebfu v\u00e0 h\u00e0ng h\u00f3a. V\u00e0 \u0111\u01b0\u1ee3c s\u1eed d\u1ee5ng trong c\u00e1c m\u1ed1c th\u1eddi gian kh\u00e1c nhau. Tuy nhi\u00ean, d\u1ef1 \u0111o\u00e1n gi\u00e1 tr\u1ecb c\u1ee7a n\u00f3 thay \u0111\u1ed5i t\u00f9y theo th\u1eddi \u0111i\u1ec3m. Trong m\u1ed9t xu h\u01b0\u1edbng t\u0103ng gi\u00e1 s\u1ebd kh\u00f4ng \u0111i\u1ec1u ch\u1ec9nh qu\u00e1 \u2154 \u0111o\u1ea1n t\u0103ng tr\u01b0\u1edbc. V\u00ec v\u1eady c\u00f3 quy t\u1eafc l\u00e0 m\u1ed9t \u0111\u1ee3t \u0111i\u1ec1u ch\u1ec9nh l\u00e0nh m\u1ea1nh th\u00ec gi\u00e1 s\u1ebd hi\u1ebfm khi qu\u00e1 thang<\/span>\u00a0<\/b>61.8%.<\/span><\/p>\nC\u00e1ch s\u1eed d\u1ee5ng ch\u1ec9 b\u00e1o Fibonacci<\/b><\/h3>\n
\u0110\u1ec3 s\u1eed d\u1ee5ng ch\u1ec9 b\u00e1o <\/span>Fibonacci<\/b>, b\u1ea1n ph\u1ea3i l\u1ef1a ch\u1ecdn m\u1ed9t chuy\u1ec3n \u0111\u1ed9ng t\u0103ng gi\u00e1 m\u1ea1nh. Sau \u0111\u00f3, h\u00e3y th\u1ef1c hi\u1ec7n nh\u01b0 sau \u0111\u1ec3 xem gi\u00e1 c\u00f3 th\u1ec3 quay tr\u1edf l\u1ea1i bao xa tr\u01b0\u1edbc khi ti\u1ebfp t\u1ee5c v\u1edbi xu h\u01b0\u1edbng t\u0103ng:<\/span><\/p>\n\n- Ch\u1ecdn c\u00f4ng c\u1ee5<\/span> Fibonacci Retracement<\/b> t\u1eeb menu tr\u00ean c\u00f9ng: <\/span>Insert -> Objects -> Fibonacci -> Fibonacci Retracement<\/b>.<\/span><\/li>\n
- Nh\u1ea5p tr\u00e1i \u1edf cu\u1ed1i v\u00f2ng l\u1eb7p X.<\/span><\/li>\n
- Trong khi gi\u1eef n\u00fat chu\u1ed9t, k\u00e9o d\u00f2ng l\u00ean \u0111\u1ea7u v\u00f2ng l\u1eb7p A.<\/span><\/li>\n
- Ch\u1ec9 b\u00e1o n\u00e0y s\u1ebd t\u1ef1 \u0111\u1ed9ng v\u1ebd c\u00e1c m\u1ee9c tho\u00e1i lui, nh\u01b0 h\u00ecnh d\u01b0\u1edbi \u0111\u00e2y:<\/span><\/li>\n<\/ul>\n